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Abstract

This paper presents a systematic method by which closure relations for the ensemble-averaged
equations of disperse two-phase ¯ows of solid spheres can be derived. The method relies on the direct
numerical simulation of three ¯ow situations: equal forces or couples applied to the spheres, and an
imposed macroscopic shear ¯ow. A crucial aspect of the work is that it focuses on systems that are
spatially non-uniform on average. It is shown that, due to this feature, several new terms arise in the
constitutive relations that would vanish for a uniform system. For example, while the usual e�ective
viscosity is recovered in the closure of the stress tensor, it is found that other terms are also present,
which confer a markedly non-Newtonian nature to the rheological constitutive equation. 7 2001
Elsevier Science Ltd. All rights reserved.
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1. Introduction

In Part I of this work (Marchioro et al., 2000; hereafter referred to as Paper I) we described
a method based on direct numerical simulation to characterize the ensemble-average behavior
of spatially non-uniform suspensions of spheres at small Reynolds numbers. In the present
paper we shall use the results of those simulations to derive in a systematic manner constitutive
relations for the description of such systems by means of averaged equations. The restriction to
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small Reynolds numbers is limited to the local scale, rather than to the global macroscopic
¯ow, and therefore, the constitutive relations that we derive are actually applicable also at
®nite global Reynolds number ¯ows.
We stress the fact that our procedure is systematic and therefore has the capability of

producing relations which would be di�cult to deduce either experimentally or by a priori
considerations. For example, the stress tensor in the mixture is found to be non-Newtonian
and non-symmetric. These features are inherently linked to spatial non-uniformities and
disappear in the case of a uniform suspension, which explains why they were missed until now.
Even though some of the new terms that we ®nd may be small in many cases, they are of great
importance in establishing the mathematical structure of the equations (e.g. hyperbolicity, with
well-known implications for their numerical solution) and in describing the ¯ow in regions of
relatively rapid spatial variations due, for instance, to the accumulation of particles in certain
¯ow structures.
Our method is based on the analysis of direct-simulation results in terms of particular a

priori vectors and tensors characterizing each simulation (e.g., an applied force), and on the
elimination of these vectors and tensors in terms of averaged quantities (e.g., the mean
volumetric ¯ow velocity) so as to obtain intrinsic (i.e., at least formally, ¯ow-independent)
constitutive relations. Even though systematic, the method is not exact. In the ®rst place, it
relies on numerical simulations that we are only able to carry out with limited accuracy.
Secondly, we use perturbation tools that give results only accurate to ®rst order in the spatial
particle non-uniformity and other non-uniformities induced by it. The ®rst de®ciency can
readily be remedied with more powerful computational tools. Although the second one can in
principle be allayed by carrying more terms in the perturbation expansion, to some extent it is
inherent to the method. Nevertheless, the new generation of constitutive relations that we
derive, even if possibly of incomplete generality by themselves, should help focus future
simulation work and constrain further re®nements of constitutive relations.
In spite of the impressive strides made by the direct numerical simulation of disperse multi-

phase ¯ows (representative recent studies are those by Sangani et al., 1996; Sangani and Mo,
1996; Phung et al., 1996; Stock, 1996; Hu, 1996; Kang et al., 1997; Ladd, 1997; Koch and
Ladd, 1997; Morris and Brady, 1998; Ahmed and Elghobashi, 1999; Nobari and Tryggvason,
1996; Pan and Banerjee, 1997; Johnson and Tezduyar, 1997; Glowinsky et al., 1999), it is hard
to overestimate the importance of a description in terms of averaged equations. In the ®rst
place, the direct numerical simulation of realistic ¯ow situations still belongs to a distant
future. Furthermore, even should such calculations be feasible, the staggering amount of
detailed information that represents their outcome would often be unnecessary and require
massive and complex post-processing Ð in fact, averaging Ð to be of practical value. If such
averaged quantities could be produced directly, rather than a posteriori, there would be an
obvious advantage.
The reason why, after many decades of e�orts, the precise form of the averaged equations is

still a matter of dispute is that any form of averaging leads to more unknowns than the
available equations. Some of the information lost in the averaging process must be
reintroduced, and no systematic way of achieving this objective has been devised save in a few
highly restricted cases, such as small disperse-phase volume fractions. The fact that our
procedure is systematic should therefore be of particular value as it removes Ð to some extent
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at least Ð the guesswork that has been a prominent feature of this area of investigation for so
long.
A detailed description of our techniques is given in Paper I. Here we give a short summary

of its salient features not only to enable the present paper to stand by itself but, more
importantly, to bring out the essential framework of the study uncluttered by the details that
are necessary to explain it fully.

2. The averaged equations

It is necessary to start with a summary of the averaged equations, mixture pressure, mixture
stress, and related terms derived in Marchioro et al. (1999); (hereafter referred to as Paper II).
In this section we present a very abbreviated treatment, relegating some de®nitions and other
details to Appendix A and directing the reader to the original reference for derivation and
analysis.
Both phases are assumed to be individually incompressible and therefore the mean

volumetric ¯ow rate um, i.e., the ensemble mean velocity at a point, irrespective of the phase
occupying that point (see Eq. (A.1)), is divergenceless:

r � um � 0: �2:1�
The balance equation for the particle number density n is

@n

@t
� r � �n Åw� � 0, �2:2�

where Åw is the ensemble average velocity of the particle center of mass (see Eq. (A.3) for a
precise de®nition). We refer to this type of averages, denoted by an overline, as particle
averages, to distinguish them from the phase averages introduced later. The particle average is
the natural ensemble average for quantities referring to a particle as a whole (such as, here, the
center-of-mass velocity), rather than to particle ®elds (e.g., the average velocity of the particle
material at a certain given point x; see Appendix A).
For the purposes of the present work, it is unnecessary to consider the inertia terms of the

averaged equations, which are therefore omitted. Upon taking the particle average, the
equation of motion for a particle is�

jrj�a
dSsssC � n� vrDg � 0: �2:3�

Here v � 4
3pa

3, with a the particle radius, is the particle volume and sssC is the microscopic
continuous-phase stress tensor, the integral is over the particle surface, and n is the outwardly
directed unit normal; rD is the density of the particle material (assumed uniform) and g the
body force. It was argued in Paper II that it is advantageous to decompose the total
hydrodynamic force on the particles Ð the integral in Eq. (2.3) Ð into a large-scale (or
generalized ``pseudo-buoyancy'') component and a component f due to the mean local ¯ow
around the particle:
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�
jrj�a

dSsssC � n � vr � � ÿ pmI� SSSC� ÿ vf: �2:4�

The mixture pressure pm and viscous stress SSSC are de®ned in Eqs. (A.6) and (2.8). It is
important to keep in mind that these de®nitions are phrased solely in terms of the microscopic
continuous-phase stress. The analysis of Paper II was based on a study of the transformation
properties of the average ®elds when the microscopic continuous-phase pressure pC is subjected
to a gauge transformation, pC4pC � c, with c an arbitrary harmonic function. It was shown
that, while the quantity pm de®ned in that paper transforms as pm4pm � c, both SSSC and f are
invariant under the transformation. As a consequence, one would expect the closure relations
for these quantities not to involve in the pressure ®eld.
With the decomposition (2.4) we write the momentum balance for the particles in the unit

volume in the form

nr� ÿ pmI� SSSC� ÿ nf � nrDg � 0: �2:5�
A general form of the continuous-phase momentum equation is given in Paper II; for the
present case in which inertia is negligible and, as shown by Eq. (2.3), the total hydrodynamic
force on the particles is a constant, this general form simpli®es to

bCr� ÿ pmI� SSSC� � bDf � bCrCg � 0: �2:6�
Here bC, D are the volume fractions of the continuous and disperse phases de®ned by

bC, D�x, t� �
1

N!

�
dCNwC, D�x; N�P�N; t�, �2:7�

in which wC, D is the characteristic, or indicator, function of the phases. The integral in (2.7) is
over the ensemble of con®gurations of N identical particles distributed according to the
probability density P�N; t�: Since the particle surface has zero measure, wC � wD � 1 and, as a
consequence, bC � bD � 1: The time variable is unimportant for the present purposes and its
explicit indication will be omitted henceforth.
It will be noted that, since bD is not quite equal to nv for a non-uniform suspension, as

shown in (A.5), the two momentum equations (2.5) and (2.6) do no precisely satisfy the
action±reaction principle. This fact is discussed at length in Paper II, and is a consequence of
the use of di�erent averages for the particles in the continuous phase. The reasons for this lack
of symmetry in dealing with the two phases are discussed in detail in our earlier work (Zhang
and Prosperetti, 1994, 1997; Marchioro et al., 1999, 2000). It is explicitly shown in Paper II
that, when the particle average is reduced to the phase average for the disperse phase, the
action±reaction principle is precisely satis®ed.
It is shown in Paper II and in Appendix A that the average viscous stress in the mixture, SSSC,

can be decomposed as

�SSSC�ij� ÿqmdij � Sij � eijl
ÿ
Rl ÿ elqr@qVr

�
, �2:8�

where qm is a scalar, S a symmetric tensor, R a pseudo-vector, and V a vector. All these
quantities can be expressed explicitly in terms of particle averages of quantities that are
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computed from the results of the numerical simulations. Explicit expressions are given in
Appendix B.
In the following it will be seen that an equation for the angular velocity of the particle phase

is also necessary. Neglecting inertia, this equation is (Zhang and Prosperetti, 1997)

a

�
jrj�a

dS n� �sssC � n� � ÅT � 0, �2:9�

where ÅT is the mean external couple acting on the particles.
The quantities to be closed are qm, S, R, V, f, and the mean hydrodynamic couple (®rst term

in Eq. (2.9)). It should be explicitly noted that all these quantities are invariant under a gauge
transformation of the pressure.

3. Method of closure

The momentum balances as written in the previous section involve more quantities than
there are equations for. This is the well-known closure problem that plagues any attempt at
deriving averaged equations. Here we describe the principle of the method by which we shall
systematically derive Ð rather than ``guess'' Ð closure relations relating the auxiliary variables
expressed in terms of averages to the fundamental average ®elds that we take to be bD, pm, um,
and Åw and the mean particle angular velocity ÅOOO:
Our method is based on a numerical implementation of the ensemble averaging principle:

many realization of the same macroscopic ¯ow are generated numerically and the results are
then averaged.
In broad outline, the approach is as follows. Let a particular ¯ow be characterized by

parameters q1, q2, . . . ,qKÿ1: In practice, these quantities could specify a characteristic spatial
scale, an applied force, and so forth. All the average quantities that arise in the numerical
solution of the problem, such as, the mean volumetric ¯ow velocity um, the mean center-of-
mass velocity of the particles Åw, the mixture stress SSSC, etc. will then also be functions of the
same parameters:

um � um�x; q1, q2, . . . ,qKÿ1�, �3:1a�

Åw � Åw�x; q1, q2, . . . ,qKÿ1�, �3:1b�

SSSC � SSSC�x; q1, q2, . . . ,qKÿ1�, �3:1c�
Choose K quantities as primary (e.g. pressure, velocities, volume fraction, etc.). By eliminating
x and the qj's between these K primary quantities and the remaining ones, a series of
functional relations is obtained that are, at least formally, problem independent:

SSSC � SSSC�um, Åw, . . . �: �3:2�
If these relations are indeed intrinsic constitutive, the particular problem or parameters that
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have been used to derive them are of no particular importance and can, therefore, be chosen
with convenience in mind.
It is of course by no means obvious that such intrinsic constitutive relations exist, but

certainly, if they do not, any averaged description of the system is impossible. Hence, we
proceed on the heuristic assumption that, at least in some approximate sense that has a
practically useful domain of applicability, they do exist.
The steps in implementing the above procedure consist therefore in deriving the

parameterizations (3.1) for one or more selected ¯ows, compute the coe�cients that appear in
these relations by numerical simulation, and carry our the elimination process leading to Eq.
(3.2) for all the necessary average quantities.
It will be seen that, in order to carry out this program, it is necessary to simulate spatially

non-uniform suspensions. The method by which this is achieved has been explained in Paper I
and need not be repeated here.

4. Numerical simulations

In order to simulate an in®nite suspension, we use the well-known device of ®lling up space
with copies of a fundamental cubic cell of side L (see e.g. Sangani and Yao, 1988; Mo and
Sangani, 1994). For each volume fraction, we generate a large number of con®gurations by
randomly arranging N particles in the cell. As described in Paper I, we have satis®ed ourselves
that the two-particle distribution function calculated on the con®gurations of these ensembles
is in very good agreement with the known result for hard spheres (see e.g. Throop and
Bearman, 1965). We have also calculated the nearest-neighbor distribution function and the
static structure factor, ®nding results in agreement with those in the literature (see e.g.
Torquato and Lee, 1990; Studart et al., 1996).
The exact microscopic velocity and pressure ®elds in the suspension are written in the form

uC � U1 � ÄuC, pC � P1 � ~pC �4:1�
where U1 and P1 are imposed velocity and pressure ®elds and ~uC, ~pC have the same
periodicity as the fundamental cell (Mo and Sangani, 1994). These ®elds are calculated by the
method of Mo and Sangani (1994), brie¯y summarized in Paper I (see also Appendix B). In all
the situations that we consider, r 2U1 � 0:
As described in detail in Paper I, on the ensembles that we have generated we construct a

slightly non-uniform probability distribution characterized by a sinusoidal variation

sin k � x, �4:2�
where jkj � 2p=L and the direction of k is taken along one of the sides of the cell. The
resulting number density is

n � n0 � Enssin k � x, �4:3�
where n0 and ns are constants dependent on the volume fraction and cell size and jEj � 1:
Similarly,

M. Marchioro et al. / International Journal of Multiphase Flow 27 (2001) 237±276242



bD � b0D � EbsDsin k � x: �4:4�
The sinusoidal spatial dependence exhibited by these relations applies to all the average ®elds,
generally including also a term proportional to Ecos k � x that happens to vanish in the
expressions for n and bD: Note that since, on the particle scale, L is large, the spatial variation
expressed by relations such as (4.3) is slow when measured on the scale a. Note also that, since
the average ®elds (with the exception of the pressure) depend sinusoidally on position (see e.g.
(4.3)), every derivative introduces an additional power of k � 2p=L:
The spatially periodic structure that we rely upon plays a two-fold role, one useful Ð the

introduction of a controlled spatial non-uniformity Ð and one undesirable, namely the
possible contamination of this spatial non-uniformity by spurious consequences of the
underlying repetition of the unit cell. In some cases, these two sources of k-dependence can be
separated. For example, the factor k 2 that would arise upon calculating r 2bD from Eq. (4.4) is
evidently solely due to the spatial non-uniformity. Conversely, a k-dependence encountered in
quantities calculated for a spatially uniform system must be an artifact of the periodic
structure. An example given in Paper I is the hindered settling function for sedimentation
(Fig. 4 of Paper I); Mo and Sangani (1994) ®nd a similar dependence for the permeability of a
porous medium. On the other hand, this artifact is sometimes absent as found in the case of
the e�ective viscosity for simple shear (solid lines in Fig. 17 of Paper I), which turns out to be
independent of cell size. When the k-dependence appears upon plotting the numerically

Fig. 1. The quantity ssS de®ned in Eq. (6.10) as a function of ka for b0D � 15% (triangles), 25% (black circles), and
35% (squares); the lines are least-squares ®ts of the form A� B�ak� 2:
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computed coe�cients as functions of ka in terms related to the spatial non-uniformity (see e.g.
Figs. 1 and 2 and the text following Eq. (6.10)), however, an ambiguity exists.
In principle, to avoid this contamination of the k-dependence of the quantities we calculate,

one could repeat the averaging with non-uniformities having wavenumber 2k, 3k, etc., and try
to separate in this way the k-dependence genuinely due to the spatial non-uniformity.
Unfortunately, convergence of the averages when the wavelength is decreased becomes very
slow, and this approach is impractical with our current computational resources. Thus, in this
paper, we shall mainly rely on results obtained in the limit k40 for a ®xed volume fraction.
Since, as is easily shown,

ka �
�
6p2

N
b0D

�1=3

, �4:5�

for each value of b0D, this extrapolation requires simulations with di�erent numbers N of
particle in the cell, from a minimum of about 10 to a maximum of about 60. The range of
values of ka that we are able to cover is therefore from about 0.5 to 1.
Three distinct physical situations have been simulated. In the ®rst one, the motion of the

particles is induced by a body force g and U1 is an arbitrary rigid-body motion. Under the
action of this force, an isolated spherical particle of radius a would move with the velocity

Fig. 2. The quantity ssM de®ned in Eq. (6.10) as a function of ka for b0D � 15% (triangles), 25% (black circles), and
35% (squares); the lines are least-squares ®ts of the form A� B�ak� 2:
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Wÿ U1 � 2

9

rD ÿ rC

mC

a2g: �4:6�

The second ¯ow is induced by an imposed simple shear characterized, up to an arbitrary rigid-
body motion, by

U1 � ggg � x, �4:7�
with ggg being a symmetric traceless constant two-tensor. The third situation considered is one in
which each particle is subject to a couple T under the action of which an isolated particle
would rotate with the angular velocity

oooÿ 1

2
r � U1 � 1

6vmC

T, �4:8�

where, again, U1 is an arbitrary rigid-body motion. In the last two simulations, we take g � 0:
For each con®guration of the ensemble, we impose on the system in turn the three

perturbing agents mentioned before and calculate the multipole coe�cients describing the ¯ow
around each sphere (see Appendix B and Mo and Sangani, 1994). Since we are dealing with
Stokes ¯ow, it is not necessary to follow the evolution of the system in time, as the entire ¯ow
only depends on the instantaneous con®guration of the spheres.
Some details on the method of numerical simulation used to generate the present results are

given in Paper I and will not be repeated here. It will su�ce to say that we use the method
described in Mo and Sangani (1994), whose code has been substantially rewritten and
developed. Naturally, we have made sure that the results given by the original code and our
code coincided. The particles were represented by ®ve singularities. In some cases, six
singularities were used ®nding essentially identical results at the two lower volume fractions of
15 and 25%, but some di�erences at the highest volume fraction of 35%. Unfortunately, the
computational resources at our disposal prevented us from using six singularities for all cases.
One of the obstacles encountered in this work has been the slowness of convergence of the

average quantities related to the spatial non-uniformity. All the results that are shown below
are based on the average of results for at least 1000 con®guration for each value of b0D and
each value of ak. Thus, the total number of individual simulations that we have conducted for
this work is well in excess of 100,000. In spite of this e�ort, in some cases the residual
numerical scatter suggests that it would be desirable to average over an even larger number of
con®gurations. Before doing so, it seems reasonable to wait for better numerical methods and
computing hardware, particularly in view of the need to extrapolate to ka � 0: The chief aim
of this work is to describe the method; the actual numerical results presented should be
regarded as preliminary. We hope to be able to re®ne the present calculations in the near
future by means of a new simulation method currently under development in our group.

5. Primary and derived variables

According to the plan outlined in Section 3, we need to identify a set of primary averaged
quantities in terms of which to express all the closure quantities. The motion of a volume
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element of the suspension is de®ned by the mean volumetric ¯ux um ÿ U1: The mean particle
motion relative to um will be described in terms of the interphase ``slip'' velocity

uD � Åwÿ um, �5:1�
and the mean particle rotation relative to the mixture by the interphase slip angular velocity

OOOD � ÅOOOÿ 1

2
r � um, �5:2�

both these vectors being objective. The local composition of the suspension is speci®ed by the
disperse-phase volume fraction bD: The two continuity equations (2.1) and (2.2), the
momentum equations (2.5) and (2.6), and the angular momentum balance (2.9) constitute a set
of ®ve equations from which um, uD, bD, OOOD, and the mean pressure pm can be determined. It
may be noted that this formulation is similar to that of the widely used two-¯uid models. In
terms of these primary variables, we can construct a certain number of scalars, vectors, and
tensors that will be used in the closure, as follows.

5.1. Polar and axial vectors

The only Galilean invariant polar vector with no derivatives available for the closure is the
slip velocity uD: Vectors like um ÿ U1 or Åwÿ U1 would be Galilean-invariant, but U1 is a
simulation-dependent quantity, and therefore, cannot be allowed in the closure relations as
discussed in Section 3.
With one derivative one can form the polar vectors rbD and rpm; since the latter is not

invariant under a gauge transformation of the pressure, however, it cannot be used for the
closure of gauge-invariant quantities (see Paper II). Two other admissible polar vectors with
one derivative are

r � OOOD, OOOD �rbD: �5:3�
Two possible vectors with two derivatives are

r 2um, rbD � Em, �5:4�
where Em is the rate of strain of the mean volumetric ¯ow rate um:

Em � 1

2

�
rum � �rum�T

�
, �5:5�

with the superscript T denoting the transpose. With two derivatives, from uD and bD we can
also construct

r�r � uD�, r 2uD, uDr 2bD, �uD � r�rbD: �5:6�
Terms analogous to the last two with um in place of uD cannot be used for closure as they are
not Galilean invariant; a term analogous to the ®rst one would vanish by Eq. (2.1). A term of
the form �rbD � r�uD is of the order E2 and cannot be determined by our method.
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As already mentioned, all the average ®elds depend sinusoidally on position (see e.g. (4.3)))
and therefore every derivative introduces an additional power of k � 2p=L: Since, on the
particle scale, L is large, we may think that any additional derivative reduces the order of
magnitude of a quantity by one order in k. It may be recalled from Paper I that, as k40, um

diverges as 1=k2 for the case of sedimentation and as 1=k for the applied shear. For this
reason, both vectors (5.4) are of order 1 or k as k40: On the other hand, uD is ®nite for k40
and therefore all the terms in (5.6) are of order k 2 in the present simulations.
By similar arguments, admissible axial vectors are

OOOD, OOODr 2bD, r 2OOOD, r�r � OOOD�, �OOOD � r�rbD, r �
ÿ
Em � rbD

�
, r 2�r � um�

r � uD, uD � rbD,
�5:7�

but not the corresponding expressions with um in place of uD due to lack of objectivity and
Galilean invariance. We do not include a term such as r 2�r � uD�, which is at least of order
k 3.

5.2. Symmetric tensors

In addition to Em, the available traceless symmetric tensors are the rate of strain of the slip
velocity

ED � 1

2

�
ruD � �ruD�T

�
ÿ 1

3
�r � uD�I, �5:8�

and

Er � 1

2

h
uDrbD �

ÿ
uDrbD

�T
i
ÿ 1

3

ÿ
uD � rbD

�
I, �5:9�

r 2Em, Emr 2bD: �5:10�
Since antisymmetric two-tensors are expressible in terms of axial vectors, we shall have no need
for them. For the reasons noted before, we do not include tensors constructed with higher-
order derivatives.

5.3. Scalars

Aside from bD and pm, the only scalars available for the closure relations are

r � uD, uD � rbD: �5:11�
As pointed out in Section 7, it is not necessary to include terms with higher-order derivatives.
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6. Symmetric part of the viscous stress

As expression for the viscous stress S is given in Eq. (A.8) of Appendix A. This de®nition is
in terms of averages of the local ®elds which are computed from the results of the numerical
simulations. Thus, S can be considered as known in a form analogous to Eq. (3.1c). The task
that we now undertake is to derive a closure relation for it by expressing it in a form
analogous to Eq. (3.2).
The tensor S is symmetric and traceless and must therefore be expressed in terms of tensors

of a similar nature. On the basis of the linearity constraint applicable to the present case of
Stokes ¯ow and of the considerations of the previous section, we therefore write

S � 2meffEm � 2mDED � 2mrEr � 2m1a
2Emr 2bD � 2m0a

2r 2Em, �6:1�

and try to determine the coe�cients in a consistent way from the numerical results of the
simulations.
Upon taking the divergence of S as given by Eq. (6.1), one would end up with ®fth-order

derivatives of the velocities in the averaged momentum equation. Without getting into the
complex (and not fully resolved) question of the appropriate boundary conditions for the two-
¯uid model, it is clear that, unless a new class of boundary conditions were formulated, it
would not be possible to solve such high-order equations. If one were to limit the theory to the
customary second-order velocity derivatives in the momentum equation, the last two terms in
Eq. (6.1) should be considered of higher order and dropped. The reason why we do not do so
quite yet will be clear from the considerations that follow.
An unfortunate but unavoidable feature of the analysis that follows is the appearance of a

large number of coe�cients that must be evaluated numerically. In order to avoid lengthy
repetitions, we rely on the results of Paper I to which the reader can refer for de®nitions. For
clarity, it is best to ®rst consider separately the cases of an imposed shear, sedimentation, and
applied couple deriving the appropriate relations from which the e�ective viscosities are to be
found. After this step, we shall consider the problem of solving these equations.

6.1. Shear

Using the results of Section 9 of Paper I we write

um � ggg � x� U c

k
Ecggg?, �6:2�

uD � a2k
�
uc?ggg

? � uckggg
k
�
Ec, �6:3�

where

gggk � �m � ggg �m�m, ggg? � ggg �mÿ �m � ggg �m�m, �6:4�
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m � k

k
, �6:5�

Es � Esin k � x, Ec � Ecos k � x: �6:6�

As shown in Paper I, the coe�cients U c, uc?, u
c
k appearing here are ®nite in the limit k40:

From Eqs. (6.2) and (6.3) we can calculate the tensors that arise in the right-hand side of
Eq. (6.1). Before substituting these results into Eq. (6.1), it is important to note that Em is O(1)
rather than O�E�: Since all the viscosities, and in particular meff , are a function of
bD � b0D � bsDEs, we have

meff

ÿ
bD

�
Em �

�
meff

�
b0D
�
� dmeff

dbD

bsDEs

�
Em �O�E2�: �6:7�

We can now proceed with the substitution of the expressions for Em, ED etc. into Eq. (6.1) to
®nd

S � 2

�
meff � bsD

�
dmeff

dbD

ÿ a2k2m1

�
Es

�
gggÿ 2a2k2uckmDEsG

g
M

ÿ 2
h
meffU

c � a2k2
ÿ
mDu

c
? ÿ m0U

c
�i
EsG

g
S,

�6:8�

where

Gg
M �

ÿ
gggk �m

��
mmÿ 1

3
I

�
, Gg

S � g?m�mggg?: �6:9�

On the other hand, S can be calculated directly from its de®nition (A.8) in terms of ensemble
averages of the multiple coe�cients of the local expansion of the ®elds near the particles. On
the basis of considerations similar to those described in Marchioro and Prosperetti (1999), it is
found that the numerical results thus obtained can be parameterized in the same way as in the
right-hand side of Eq. (6.8):

1

mC

S �
ÿ
s0 � ssEs

�
ggg� ssSEsG

g
S � a2k2ssMEsG

g
M: �6:10�

We stress again that the coe�cients s are to be considered known as a result of the numerical
simulations. In order to give an idea of the character of these numerical results, Figs. 1 and 2
show graphs of ssS and ssM as functions of ka for b0D � 15% (triangles), 25% (black circles), and
35% (squares); the lines are least-squares ®ts of the form A� B�ak�2: It is seen that the results
for ssS are smooth and reasonably well ®tted; for scM the 15% results are smooth, while the
higher-b0D ones exhibit irregularities probably due to an incomplete convergence of the mean.
These two ®gures are typical of the numerical results that we encounter; further examples can
be found in Paper I.
If Eqs. (6.8) and (6.10) hold simultaneously, it is necessary that
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meff

mC

� 1

2
s0, �6:11�

d

dbD

�meff

mC

�
ÿ a2k2 m1

mC

� 1

2

ss

bsD
, �6:12�

meff

mC

U c � a2k2
�mD
mC

uc? ÿ
m0
mC

U c
�
� ÿssS �6:13�

ÿ2mD
mC

uck � ssM: �6:14�

A consideration of these equations justi®es the retention of higher-order derivatives in our
closure equation (6.1) since we see here that mD appears to be in the same order in k as m0:
Thus, even if the term m0 is eventually to be disregarded in the averaged equations, if it had
been dropped in writing Eq. (6.1), the numerical value of mD would be calculated incorrectly; a
similar situation is encountered for the case of sedimentation. This peculiarity arises because of
the rather arti®cial nature of the situations that we simulate, which leads to some coe�cients
diverging in the limit k40 (see e.g. (6.2) and the considerations in Paper I). This feature would
not be present in the simulation of more physical ¯ows, to which therefore terms such as
Emr 2bD and r 2Em would not be expected to contribute signi®cantly.

6.2. Sedimentation

From Section 8 of Paper I we write

um ÿ U1 � U s

a2k2
EsW?, �6:15�

uD � F0W� us?EsW
? � uskEsW

k, �6:16�
where

Wk � �W �m�m, W? � �Iÿmm� �W, �6:17�
and F0 � F�b0D� is the hindered settling function for sedimentation evaluated at the
unperturbed volume fraction b0D: In Paper I, the numerical results for this function were ®tted
by

F
ÿ
bD

� � ÿ1ÿ bD

�c1ÿc2bD , �6:18�
with c1 � 6:50, c2 � 3:18: As before, the coe�cients appearing in Eqs. (6.15) and (6.16) have a
®nite limit as k40: From these expressions, we can calculate the tensors that arise in the right-
hand side of Eq. (6.1) to ®nd
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S � k

�
meff

U s

a2k2
� mDu

s
? � mrF

0bsD ÿ m0U
s

�
EcGW

S � 2
h
mDu

s
k � mrF

0bsD
i
kEcGW

M, �6:19�

where GW
S, M are given by

GW
S �W?m�mW?, GW

M � �W �m�
�

mmÿ 1

3
I

�
: �6:20�

The next step is to calculate S from its de®nition and to parameterize the results in the same
form as in Eq. (6.19):

1

mC

S � k

�
scS

a2k2
GW

S � scMGW
M

�
Ec: �6:21�

If, by analogy with Eq. (6.10), in this parameterization one were to introduce a term like
ssSEsGS, one ®nds numerically that scS � O�1�, while ssS � O�10ÿ3�: Hence, we feel justi®ed in
dropping such terms in Eq. (6.21).
Upon comparing with Eq. (6.19), we are led to

meff

mC

U s � a2k2
�mD
mC

us? �
mr
mC

F0bsD ÿ
m0
mC

U s
�
� scS, �6:22�

mD
mC

usk � F0bsD
mr
mC

� 1

2
scM: �6:23�

These are the only two equations involving mr: It is convenient for the following developments
to use the second one to eliminate this quantity from the ®rst one with the result

meff

mC

U s � a2k2
�ÿ
us? ÿ usk

�mD
mC

ÿ m0
mC

U s
�
� scS ÿ

1

2
a2k2scM: �6:24�

6.3. Couple

For the case in which a couple T acts on each particle, we have from Section 10 of Paper I:

um ÿ U1 � U

k
Ecm� ooo, �6:25�

uD � a2kuEcm� ooo: �6:26�
Upon substitution into the closure relation (6.1) for S we ®nd Er � O�E2� and, therefore,

S � ÿ
�
meffU� a2k2�mDuÿ m0U�

�
EsGo

S , �6:27�
with Go

S��m� ooo�m�m�m� ooo�: From the direct numerical calculation, on the other hand,

S � sSEsmCGo
S , �6:28�
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from which, upon comparing,

meff

mC

U� a2k2
�mD
mC

uÿ m0
mC

U

�
� ÿsS: �6:29�

6.4. The e�ective viscosities

Before drawing the consequences of the previous relations, it is important to remind the
reader of the sense in which they must be understood. The closure relation (6.1) is proposed as a
relation of general validity, independent of the particular ¯ow considered (for a given particle
probability distribution). Hence, the e�ective viscosities appearing in it will depend in general on
the volume fraction2 but not on the parameter k which, together with E, g, etc., characterizes
the particular ¯ow considered. For example, the dependence of S on k as expressed by Eq.
(6.8) must arise from the k-dependence of the average ®elds (6.2) and (6.3) rather than directly
from a k-dependence of the e�ective viscosities. This is another reason why we have inserted
high-order terms such as r 2Em in Eq. (6.1). One could avoid this term by simply writing
~meffEm in the closure relation, but this procedure would then lead to the k-dependent relation

~meff � meff ÿ �ak�2m0: �6:30�
Retaining all the terms appearing in Eq. (6.1) has the e�ect of enabling us to treat the e�ective
viscosities as constants, at least up to O�ak�2 included.
The ®rst relation (6.11) was examined in Paper I, where it was found that the expression in

the right-hand side is independent of k and coincides with the e�ective viscosity of a uniform
suspension as calculated by several authors (see e.g. Ladd, 1990; Mo and Sangani, 1994). Fig. 3
shows calculated values of meff=mC for several values of b0D (circles; the segments will be
explained later). Some numerical values are given in Table 1. The line is the ®t

meff

�
b0D
�

mC

�
 
1ÿ b0D

bmax

!ÿy
, �6:31�

with bmax � 0:79, y � 1:94 given in Paper I.

Table 1
Numerical values of the dimensionless e�ective viscosity meff=mC as determined from the three ¯ow situations

considered in this paper. Note the substantial consistency among the various results indicating the independence of
this quantity from the particular ¯ow considered

b0D (%) Eq. (6.11) Eq. (6.33) Eq. (6.34) Eq. (6.35)

15 1.52 1.52 1.49 1.50

25 2.10 2.09 2.01 2.07
35 3.02 3.02 2.90 3.00

2 In principle, of course, they will also depend on the particle probability distribution (see e.g. Zuzovsky et al.,
1983) for which, however, a de®nite choice Ð randomly placed hard spheres Ð has been made in this study.
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Let us now consider the second relation (6.12). Since meff is independent of k, so is its
derivative. The left-hand side of the equation then suggests a quadratic interpolation A� B�ak�2
for the right-hand side, which is compatible with the numerical results. In the limit ak40, the
term a2k2�m1=mC� in the left-hand side vanishes and what is left is the consistency condition

d

dbD

�meff

mC

�
� 1

2
lim
k40

ss

bsD
: �6:32�

The values in the left-hand side can be found by di�erentiating (6.31) and, for bD � 15, 25, and
35%, are 4.56, 7.52, and 13.7, respectively. The corresponding values of the right-hand side
obtained from the least squares ®t are instead 4.56, 7.11, and 11.3; the straight dashed lines in
Fig. 3 have been drawn with these slopes. The agreement is excellent at the smaller volume
fractions. The discrepancy for b0D � 35% is somewhat larger but, as explained before, these
results may not be as accurate due to the use of an insu�cient number of singularities to
represent the particles.
According to Eq. (6.12), the coe�cient of the term �ak�2, in the least-squares ®t of the right-

hand side should be identi®ed with m1; some numerical values for this quantity are shown in
Table 2. The dilute-limit result is m1=mC � 1

4bD:
By a similar argument, from Eq. (6.13) we deduce that, in the limit ak40,

meff

mC

� ÿ ssS0
U c

0

; �6:33�

Fig. 3. The normalized e�ective viscosity meff=mC as a function of the disperse-phase volume fraction b0D:
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from Eq. (6.24)

meff

mC

� scS0
U s

0

; �6:34�

and, from Eq. (6.29),

meff

mC

� sS0
U0

, �6:35�

where, for brevity, we write

ssS0 � lim
ak40

ssS, �6:36�

etc. These relations must be satis®ed for the consistency of the present approach. The
numerical values shown in Table 1 indicate that this is indeed so to a good accuracy. This
remark is important as, on the one hand, it substantiates the correctness of the approach and,
on the other, shows the independence of the e�ective viscosity from the particular ¯ow
considered (for a given particle probability distribution); this, of course, is an essential feature
of an e�ective physical property appearing in a closure relation.
Eqs. (6.33)±(6.35) can be used to remove the k-independent terms from the corresponding

Eqs. (6.13), (6.24), and (6.29) to ®nd, after division by �ak�2,

uc?0
mD
mC

ÿU c
0

m0
mC

� ÿssS2 ÿ
meff

mC

U c
2, �6:37�

ÿ
us?0 ÿ usk0

�mD
mC

ÿU s
0

m0
mC

� scS2 ÿ
1

2
scM0 ÿ

meff

mC

U s
2, �6:38�

u0
mD
mC

ÿU0
m0
mC

� ÿsS2 ÿ meff

mC

U2, �6:39�

where

ssS2 � lim
ak40

ssS ÿ ssS0
�ak�2

, �6:40�

Table 2
Computed values of the e�ective viscosities mr and m1

b0D (%) mr=mC m1=mC

O�bD� 0 1
4bD

15 1.17 0.228
25 2.65 0.495

35 7.39 1.05
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etc. Together with the k � 0 limit of Eq. (6.14), namely

mD
mC

� ÿ ssM0

2uck0
, �6:41�

these are four equations in the two unknowns mD and m0: With a su�cient number of high-
accuracy numerical simulations one should be able to solve any pair and ®nd that the solution
satis®es to a good accuracy the remaining two equations. Unfortunately, this straightforward
approach is not available here because of the scatter of the numerical results that prevents a
reliable determination of the ®tting parameters. Hence, we take a less direct route as follows.
We ®rst solve Eqs. (6.37) and (6.38) for mD, m0, and then Eqs. (6.38) and (6.39) for the same

quantities. The two sets of values are similar, but not as close as it would be desirable. To
improve this preliminary estimate we form a combination, f say, of the sums of the squares of
the three Eqs. (6.37)±(6.39), and determine the ®tting parameters on which f depends most
strongly. This study reveals that these are us?0 and scM0, and we therefore consider f �
f�us?0, scM0�: We then increment these parameters by a small amount determined in such a way
that the new value of f, approximated by the lowest-order Taylor series, vanishes. This
procedure leads to new values for mD, m0 as computed from Eqs. (6.37), (6.38) and (6.38), (6.39)
that are now very close to each other as shown in Tables 3 and 4. Finally, we verify whether
the value of mD thus obtained is consistent with Eq. (6.41). Although, apparently, this is the
simplest relation, it is unfortunately the one a�ected most strongly by the imprecision with
which the ®tting parameters can be determined.
This procedure could be improved in several ways, but at the cost of a signi®cantly greater

amount of work. Rather than proceeding in this direction, at this stage it appears more
appropriate to wait for better numerical results obtained with a signi®cantly larger number of
particles and con®gurations. Such computations are currently under way. In any event, the
results shown in Tables 3 and 4 already show a satisfactory degree of consistency. The
numerical results can be ®tted by3

Table 3
Calculated values of mD=mC for the three cases

b0D (%) Sedimentation Couple Shear

O�bD� ± ± 3
5bD

15 0.408 0.408 0.650
25 0.947 0.937 0.951

35 2.17 2.10 2.07

3 The exponents in these ®ts are close to 2 and one would be tempted to try a ®t Ab 2
D: The result is

mD=mC � 16:80b 2
D, mr=mC � 51:05b 2

D, but the ®t is not as good as that provided by Eq. (6.42).
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mD
mC

� 14:5b1:920D ,
mr
mC

� 61:5b2:128
D ; �6:42�

These lines and the computed points are shown in Fig. 4.
In developing the previous considerations concerning terms of order �ak�2 we have ignored

the di�culty mentioned earlier of a possible contamination of the k-dependence by the
underlying periodic structure. The degree of consistency among the numerical values calculated
supports this procedure although, strictly speaking, the quantitative conclusions drawn in this
section should be considered as tentative.

Table 4
Calculated values of m0=mC for the three cases

b0D (%) Sedimentation Couple Shear

O�bD� ± ±
7

80
bD

15 0.0218 0.0217 0.0410
25 0.0293 0.0301 0.0387

35 0.104 0.106 0.109

Fig. 4. The computed values of mD=mC (open circles) and mr=mC (solid circles) as functions of b0D; the lines are the
®ts (6.42).
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7. The isotropic part of the viscous stress

The isotropic part of the viscous stress must be closed in terms of the scalars (5.11), and we
therefore write

1

mC

qm � Q1r � uD �Q2uD � rbD: �7:1�

By using the expressions for uD given in the previous section, we ®nd

1

mC

qm � a2k2Q1u
c
k�m � ggg �m�Es � k

�
Q1u

s
k �Q2F0bD

�
EcW �m, �7:2�

where we have combined the two cases of shear and sedimentation for brevity; qm vanishes to
the present order in E for the applied couple case.
An explicit expression for qm in terms of averages of the local ®elds is given in Eq. (B.11) of

Appendix B. As before, these averages are obtained from the numerical simulations and we
parameterize them as

1

mC

qm � a2k2qgEs�m � ggg �m� � kqWEcW �m: �7:3�

Upon comparing with Eq. (7.2) we thus have

Q1 � lim
k40

qg

uck
, Q2 � lim

k40

1

F0bsD

 
qW ÿ usk

uck
qg

!
: �7:4�

It is found numerically that, as a function of k, uck goes through 0. To avoid a singularity it is
therefore preferable to e�ect the extrapolation to k � 0 on b0D=Q1, 1=Q2; the results of this
operation are shown in Figs. 5 and 6, and numerical values are given in Table 5. As shown in
Figs. 7 and 8 the numerical results can be ®tted as4

Q1 � 3:32b1:371D , Q2 � 34:5b1:823D �7:5�
It is clear that, if higher-order derivatives such as, for example, r 2�r � uD�, were retained in the

Table 5
Calculated values of Q1, Q2, V1, R1 for three volume fractions

b0D (%) Q1 Q2 V1 R1

15 0.260 1.150 0.00474 0.569
25 0.432 2.39 0.134 1.12
35 0.855 5.55 0.315 1.89

4 An alternative, less good ®t is provided by Q1 � 4:00b3=2D , Q2 � 44:6b 2
D:
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closure (7.1), the corresponding contributions would have a higher order in k than those
retained, and would therefore be unimportant in the limit k40: The situation is thus di�erent
from that encountered in the previous section in which some terms with low-order derivatives
gave a contribution of the same order in k as terms with higher-order derivatives. It is thus
justi®ed to retain only the low-order terms in the closure (7.1).

8. The antisymmetric part of the viscous stress

According to Eq. (2.8), the antisymmetric part of the stress can be expressed in terms of the
polar vector V and of the axial vector R. The procedure is the same as that explained in detail
in the previous sections and therefore an abbreviated description will be su�cient.

8.1. Closure of V

The vector V is polar and therefore, a priori, it can be expressed as a linear combination of
the polar vectors listed in Section 5. Since it is the double curl of V that enters the ®nal
momentum equation, in order to avoid spatial velocity derivatives of order higher than the
second, it would be su�cient to set V simply proportional to uD: Nevertheless, we shall also
include higher-order polar vectors much for the same reason as in the symmetric part of the
viscous stress in Section 6, namely because some terms that would give a negligible

Fig. 5. The quantity b0D=Q1 de®ned in Eq. (7.4) as a function of ka for b0D � 15% (triangles), 25% (black circles),
and 35% (squares); the lines are least-squares linear ®ts.
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contribution to the averaged equations appear to have the same order in k as uD for some of
the ¯ows that we simulate. Furthermore, by so doing, we shall derive consistency relations
useful as a check of the results. Thus, we postulate the following closure relation:

1

mC

V � V1uD � V2a
2Em � rbD � V3a

2r 2um � V4a
2r � OOOD � V5a

2rbD � OOOD

� a2V6r�r � uD� � a2V7�uD � r�rbD � a2V8uDr 2bD � a2V9r 2uD: �8:1�

Expressions for uD and um for the three cases were given in the previous section. In order to
proceed, we need to give corresponding expressions for OOOD which are the following:

OOOD � kOcm�WEc sedimentation, �8:2�

OOOD � a2k2OsEsm� ggg?, shear, �8:3�

OOOD � Cooo� ÿOkoook � O?ooo?
�
Es couple, �8:4�

where

ooo? � oooÿ �m � ooo�m, oook � �m � ooo�m: �8:5�

Fig. 6. The quantity 1=Q2 de®ned in Eq. (7.4) as a function of ka for b0D � 15% (triangles), 25% (black circles), and
35% (squares); the lines are least-squares linear ®ts.
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In Eq. (8.4), C�bD� is the hindrance function for rotation introduced in Paper I (see also
Brenner, 1970; Brenner, 1984), where it was ®tted as

C � ÿ1ÿ bD

�c3ÿc4bD , �8:6�
with c3 � 1:50, c4 � 0:41:
From a parameterization of the direct numerical results for V calculated from the expression

(B.16) we ®nd, in the three cases,

1

mC

V � v0W�
�
vskW

k � vs?W?
�
Es, �8:7�

1

mC

V � a2k
�
vckggg
k � vc?ggg

?
�
Ec, �8:8�

1

mC

V � a2kvcm� oooEc: �8:9�

With these expressions and the earlier ones for uD and um we have, for sedimentation,

F0V1 � v0, �8:10�

Fig. 7. The computed values of Q1 (solid circles) and V1 (open circles) as functions of b0D; the lines are the ®ts (7.5)
and (8.16).
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F0dV1

dbD

� usk
bsD

V1 � ÿ
vsk
bsD
� a2k2

bsD

h
usk�V6 � V9� � F0bsD�V7 � V8�

i
, �8:11�

ÿF0dV1

dbD

ÿ us?
bsD

V1 � U s

bsD
V3 � vs?

bsD
� a2k2

bsD

ÿ
OcV4 ÿ F0bsDV8 ÿ us?V9

�
, �8:12�

for the shear case

uck
bsD

V1 � V2 � ÿ
vck
bsD
� a2k2

uck
bsD
�V6 � V9�, �8:13�

uc?
bsD

V1 � V2 ÿ U c

bsD
V3 � ÿvc?

bsD
� a2k2

bsD

ÿ
OsV4 � us?V9

�
, �8:14�

and for the applied couple

1

bsD
�uV1 ÿUV3� � O?

bsD
V4 �C0V5 � ÿ vc

bsD
� a2k2

bsD
uV9: �8:15�

As before, we write F0 � F�b0D� and C0 � C�b0D�:

Fig. 8. The computed values of Q2 (solid circles) and F2 (open circles) as functions of b0D; the lines are the ®ts (7.5)
and (9.16).
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The ®rst relation (8.10) only involves homogeneous averages and it is found numerically that v 0

is independent of k. Upon using the value of F0 extrapolated to k � 0, we thus evaluate V1 in
the same limit. The dependence of V1 upon ak is shown in Fig. 9 and the values extrapolated
to ak � 0 are plotted as a function of bD in Fig. 7. The dashed line is a ®t of the form5

V1 � 3:11b2:219
D : �8:16�

By evaluating the second relation (8.11) in the limit ak40 we ®nd

F0dV1

dbD

� usk
bsD

V1 � ÿ
vsk
bsD

, �8:17�

which is a consistency condition similar to Eq. (6.32) encountered earlier. As in that case, we
®t the k-dependent numerical results by the quadratic A� B�ak�2 and extrapolate to ak � 0: It
is found that the scatter is very small with B of the order of a few percent of A so that, the
extrapolation can be carried out with con®dence. Segments with a slope given by this
extrapolation are attached to the calculated values of V1�bD� in Fig. 7. It appears that these
slopes are consistent with the trend of the results. Numerically, for bD � 15%, the two sides of
Eq. (8.17) equal 0.0937 and 0.0985, respectively; for bD � 25% 0.0571 and 0.0624; for bD �
35% 0.0400 and 0.0391.

Fig. 9. The quantity V1 given by Eq. (8.10) as a function of ka for b0D � 15% (triangles), 25% (black circles), and
35% (squares); the lines are least-squares linear ®ts.

5 Another, not as good, possibility with a simpler exponent is V1 � 3:25b9=4D :
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Eq. (8.13) evaluated for k � 0 can be used to ®nd V2; with V1 and V2 known, one can ®nd
expressions for V3 from both, Eqs. (8.12) and (8.15). We will not show these results as the
corresponding terms, when inserted in the momentum equation, would contain spatial
derivatives of order beyond the second.

8.2. Closure of R

It is the curl of R that enters the momentum equation and, in order to have second-order
velocity derivatives at the most, ®rst-order derivatives in R would be su�cient. Nevertheless, as
before, we include second-order terms as well. On the basis of the analysis of Section 5, we set

1

mC

R � R1OOOD � R2a
2r � ÿEm � rbD

�� R3a
2r 2�r � um� � R4r � uD � R5rbD � uD

� R6a
2r�r � OOOD� � R7a

2�OOOD � r�rbD � a2R8OOODr 2bD � a2R9r 2OOOD: �8:18�

By calculating R according to its expression (B.15) and suitably parameterizing the results, we
®nd, for the case of sedimentation,

1

mC

R � krcm�WEc, �8:19�

for the case of shear

1

mC

R � a2k2rsm� ggg?Es, �8:20�

and, for the applied couple,

1

mC

R � r0ooo�
�
rskooo

k � rs?ooo
?
�
Es: �8:21�

By comparing with Eq. (8.18), in which suitable substitutions are made for the primary
variables um, uD, etc., we have

OcR1 ÿ R3U
s � R4u

s
? � F0bsDR5 � rc � a2k2OcR9, �8:22�

for sedimentation,

OsR1 ÿ bsDR2 �U cR3 ÿ uc?R4 � rs � a2k2OsR9, �8:23�
for shear, and

C0R1 � r0, �8:24�

OkR1 �C0bsD
dR1

dbD

� rsk � a2k2
�
Ok�R6 � R9� �C0bsD�R7 � R8�

�
, �8:25�
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O?R1 �C0bsD
dR1

dbD

ÿ a2k2�UR3 ÿ uR4� � rs? � a2k2
ÿ
C0bsDR8 � O?R9

�
, �8:26�

for the applied couple.
It will be shown below in Eq. (9.24) that Ok � O? so that, for consistency of Eqs. (8.25) and

(8.26) in the limit k40, one must have rsk � rs?, which is indeed numerically veri®ed. From the
®rst term in the expression (B.15) for R, from the expression (B.18) for the hydrodynamic
couple, and from the de®nition (4.8) of ooo, it can be shown that r 0 in the right-hand side of Eq.
(8.24) equals 3b0D so that the ®rst equation (8.24) simply shows that

R1

ÿ
bD

� � 3
bD

C
ÿ
bD

� , �8:27�

where, as mentioned before, C is the rotational hindrance function for a uniform suspension.
By using this relation in Eq. (8.25) or (8.26), again in the limit k40, we ®nd

3
b0D
C0

�
Ok ÿ bsD

dC
dbD

�
� rsk ÿ 3bsD: �8:28�

From Eq. (9.24) derived later, the left-hand side vanishes. The numerical evidence for the right-
hand side is consistent with this conclusion.
Unfortunately, the remaining equations are insu�cient to calculate the other closure

constants, and in particular R4 and R5, that multiply terms that would make a contribution in
the momentum equation. In order to determine these coe�cients it appears necessary to
simulate other ¯ow situations.

9. The inter-phase interaction force and couple

In view of the vectorial nature of the interphase interaction force f, on the basis of the
considerations of Section 5, we may represent it as

vf � 6pmCa
3bC

�
aÿ2F1uD � F2Em � rbD � F3r 2um � F4r � OOOD � F5rbD � OOOD

� F6r�r � uD� � F7�uD � r�rbD � F8uDr 2bD � F9r 2uD

�
: �9:1�

Contrary to the previous cases in which the quantity to be closed had to be suitably
parameterized on the basis of numerical results, here we readily ®nd an exact analytical
expression. For this purpose, we eliminate f between the momentum equations (2.5) and (2.6)
to ®nd

r� ÿ pm � SSSC� � ÿ
ÿ
bCrC � bDrD

�
g: �9:2�

Upon substitution into the disperse-phase momentum equation (2.5) we then ®nd (with
U1 � 0)

vf � 6pamCbCW: �9:3�
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In the couple and shear cases g vanishes and, from Eq. (4.6), so does W. In these cases,
therefore, f = 0. We also recall from Paper I, Eq. 8.1, the de®nition of the hindered settling
function F,

uD � F
ÿ
bD

�
W, �9:4�

and note that, as in Eq. (6.7),

F1

ÿ
bD

�
uD �

�
F1

�
b0D
�
� dF1

dbD

bsDEs

�
uD �O�E2�: �9:5�

With these results and the earlier expressions for uD, um, and oooD we ®nd, for sedimentation,

F0F1 � 1, �9:6�

uskF1 � F0 dF1

dbD

bsD � ÿa2k2
h
usk�F6 � F9� � F0bsD�F7 � F8�

i
, �9:7�

us?F1 � F0 dF1

dbD

bsD �U sF3 � a2k2
ÿ
OcF4 ÿ F0bsDF8 ÿ us?F9

�
, �9:8�

for shear

uckF1 ÿ bsDF2 � ÿa2k2uck�F6 � F9�, �9:9�

uc?F1 ÿ bsDF2 �U cF3 � ÿa2k2
ÿ
OsF4 � uc?F9

�
, �9:10�

and for the applied couple

uF1 �UF3 ÿ O?F4 ÿC0bsDF5 � ÿa2k2uF9: �9:11�
The number of equations is smaller than the number of unknowns which therefore cannot all
be determined. We limit ourselves to the terms of order 0 in ak and drop all terms of order
a2k2:
Eq. (9.6) shows that F1 is the inverse of the hindered settling function F, which simply

follows from the de®nition of this quantity; a ®t to the numerical results was given earlier in
Eq. (6.18). When Eq. (9.6) is used to eliminate F1 in Eq. (9.7), neglecting the terms of order
�ak�2, one has

usk �
dF
dbD

bsD: �9:12�

Similarly, from Eqs. (9.8) and (9.10),

F3 �
usk ÿ us?
U sF0

, F3 �
uck ÿ uc?
U cF0

, �9:13�

M. Marchioro et al. / International Journal of Multiphase Flow 27 (2001) 237±276 265



while, from Eq. (9.9),

F2 �
uck

bsDF
0
: �9:14�

It is understood that all the coe�cients in these relations are evaluated in the limit k40:
The relation (9.12) can be checked since usk is found from a ®t to the numerical results while

the right-hand side is calculated from Eq. (6.18). For b0D � 15, 25, and 35%, one ®nds
usk � ÿ0:345, ÿ0.313, and ÿ0.238, while �dF=dbD�bsD � ÿ0:370, ÿ0.324, and ÿ0.238. The
agreement is quite satisfactory. For bD � 15%, the right-hand sides of the two expression for
F3 (9.13) are found to converge to the values 0.370 and 0.389 as ak40: These numbers are
su�ciently close to be considered equal within the accuracy that can be expected in the present
calculations. The situation is similar for 25 and 35%, where one ®nds F3 � 0:668, 0.664 and
1.38, 1.13, respectively. In the dilute limit, F3 is the coe�cient of the FaxeÂ n term in the force
and therefore equals 1/6. The three computed values plus F3 � 1=6 for b0D � 0 are shown in
Table 6 and Fig. 10, where the line is a ®t of the form

F3 � 1

6
� 6:777b1:767D : �9:15�

It can be seen that the computed values are consistent with the analytical result at b0D � 0:
Finally, from Eq. (9.14), one can evaluate F2 with the results given in Table 6 and shown in
Fig. 8; the line is the ®t6

F2 � 14:6b0:8822D : �9:16�
As in the previous cases, it is impossible to determine the remaining coe�cients using only the
results of the three ¯ows simulated in this study.
If the k-independent terms are subtracted from the two sides of Eq. (9.12) and the result

divided by ak, one has a relation that is not veri®ed numerically. We believe that this
circumstance is due to the fact that the k dependence of F is contaminated by the periodic cell
structure of the suspension, as indicated by the fact (already mentioned in Section 4) that F is
found to depend on k even in the uniform case. Short of an analytical proof, a fully
satisfactory resolution of this matter requires the use of di�erent spatial periods for the spatial

Table 6
Computed values for some of the closure terms for the force and the hydrodynamic couple

b0D (%) F2 F3 L1

15 2.78 0.380 1.14
25 4.17 0.666 2.24
35 5.91 1.26 3.77

6 Alternatively, F2 and F3 can be ®tted as F2 � 17:35bD, F3 � 1

6
� 9:49b 2

D: The quality of these ®ts is however
somewhat inferior.
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non-uniformity and the fundamental cell structure of the suspension, as discussed in Section 4.
Unfortunately, the conspicuous computational resources necessary for this task are beyond
those presently available to us.
The last quantity that needs to be closed is the hydrodynamic couple acting on the particles.

This is an axial vector and can therefore be closed similarly to Eq. (8.18):

n

mC

�
jrj�a

dSr� �sssC � n�

� ÿL1OOOD � L2a
2r � ÿEm � rbD

�� L3a
2r 2�r � um� � L4r � uD � L5rbD � uD

� L6a
2r�r � OOOD� � L7a

2�OOOD � r�rbD � a2L8OOODr 2bD � a2L9r 2OOOD: �9:17�

The angular momentum balance equation shows that the integral in the left-hand side equals
minus the applied couple and therefore vanishes for sedimentation and shear. Proceeding as
before, we therefore ®nd

ÿOcL1 ÿU sL3 � us?L4 � F0bsDL5 � a2k2OcL9, �9:18�
for the case of sedimentation

ÿOsL1 ÿ bsDL2 �U cL3 ÿ uc?L4 � a2k2OsL9, �9:19�

Fig. 10. The parameter F3 given by Eq. (9.13) as a function of b0D; the line is the ®t (9.15).
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for shear, and

C0L1 � 6b0D, �9:20�

ÿOkL1 ÿC0bsD
dL1

dbD

� ÿ6vns � a2k2
�
Ok�L6 � L9� �C0bsD�L7 � L8�

�
, �9:21�

ÿO?L1 ÿC0bsD
dL1

dbD

� ÿ6vns � a2k2
ÿ
UL3 ÿ uL4 �C0bsDL8 � O?L9

�
, �9:22�

for the applied couple. Eq. (9.20), which follows from the de®nition of the hindrance function
for rotation (see e.g. Eq. 10.1 in Paper I) shows that L1�b0D� � 6b0D=C

0 � 2R1: Upon
eliminating L1 between Eqs. (9.21) and (9.22), in the limit k40, one ®nds

Ok � O? � bsD
dC
dbD

: �9:23�

The three quantities appearing here are shown in Table 7 where a good consistency is
observed. Again, it is not possible to determine the other coe�cients.

10. Discussion and conclusions

In this paper, we have developed a method to deduce closure relations for the averaged
equations describing a spatially non-uniform disperse two-phase ¯ow of equal spheres in a
viscous ¯uid. The method is systematic and relies on an averaging procedure to reduce the
closure quantities to numerical coe�cients multiplying the primary average ®elds and their
derivatives. The coe�cients have been calculated on the basis of extensive numerical
simulations.
The constitutive relations determined have been presented in Sections 6±9. Due to the

manner of their derivation, some of these relations would give rise to spatial derivatives of
velocities of order higher than 2 when substituted into the momentum equations. Such terms
represent e�ects of higher order in the ratio of the particle radius to the macroscopic length
scale, and can be expected to be small. Furthermore, their presence would render necessary the
formulation of new boundary conditions to be used for the solution of the equations. For these
reasons it seems reasonable to drop them, at least for the time being. With this simpli®cation,

Table 7
Numerical values of the quantities appearing in the consistency relation (9.22)

b0D (%) ÿOk ÿO? ÿbsD�dC=dbD�

15 0.218 0.211 0.193
25 0.340 0.332 0.292

35 0.429 0.416 0.373
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collecting the previous results, the ®nal expression for the viscous stress becomes

SSSC � ÿ
ÿ
Q1r � uD �Q2uD � rbD

�
I� 2meffEm � 2mDED � 2mDEr � mCEEE �

�
R1OOOD � R4r

� uD � R5rbD � uD ÿ r�V1uD�
�
, �10:1�

where EEE is the completely antisymmetric three-tensor. Here, uD � Åwÿ um is the particle ``slip''
velocity and OOOD� ÅOOOÿ 1

2
r � um the slip rotational velocity; ED is the rate of strain of the ®eld

uD and Em the analogous tensor related to the mixture volumetric ¯ux um de®ned in Eq. (A.1);
Er is de®ned in Eq. (5.9). The e�ective viscosity meff is the same as that found by earlier
investigators; mD and mr are other viscosities the values of which are given in Tables 2 and 3
for particle volume fractions bD � 15, 25, and 35%. Section 9 describes closures for the
hydrodynamic force and couple acting on the particles.
In addition to the viscosities, the constitutive relation (10.1) contains several other volume-

fraction-dependent coe�cients such as, R1, R4, etc. for the determination of which a su�cient
number of relations is required. By considering three di�erent ¯ow situations Ð sedimentation,
shear, and applied couple Ð we were able to generate some of the required relations. The
missing ones will require the simulation of other ¯ows.
Even though the closure method that we have developed is systematic, it is not exact. We

quantify the non-homogeneity of the particle distribution in terms of a small parameter and
use a perturbation expansion in terms of this parameter truncated to ®rst order. In principle,
one could carry other orders (and in practice at least one more) to gain further information.
This approach might be useful also to attack ¯ows with small, but non-zero, particle Reynolds
number.
A signi®cant practical di�culty that we have encountered is that our method requires a

consideration of the limit of large cell sizes L (or, more precisely, of ka40, where a is the
particle radius and k � 2p=L). Approaching this limit requires in turn a relatively large number
of particles in the fundamental cell, while we were limited to a maximum of about 60 by the
computational resources at our disposal. Secondly, convergence of the ensemble averaging is
very slow and, even with 1000 or more con®gurations for each computed point, some of our
results were plagued by a signi®cant statistical noise. We expect that faster computers and
better algorithms (e.g., that of Sangani and Mo, 1996 or another one under development in
our group) would make a signi®cant di�erence. We hope to be able to re®ne the present
calculations in the near future.
A fundamental limitation of the method as presented in this paper lies in the use of an

assumed probability distribution Ð randomly arranged hard-spheres Ð that is not correct for
a ¯owing suspension (Batchelor and Green, 1972; Brady and Morris, 1997). Whether the
present approach can be extended to deal with a more realistic particle probability distribution
is, at present, an open question. However, on the basis of a similar experience with
homogeneous suspensions where the particle probability distribution a�ects the numerical
value of the e�ective viscosity but not the Newtonian nature of the rheological constitutive
relation, it might be expected that at least the functional form of the equations that we have
found would remain valid.
In spite of these limitations, an interesting conclusion of the present study Ð that can be
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expected to be independent of the probability distribution Ð is the qualitative di�erence
between uniform and non-uniform suspensions. A spatial non-homogeneity confers to the
suspension rheological properties that cannot be inferred on the basis of those of a
homogeneous one.
An important task still ahead is of course the numerical solution of the averaged equations.

It is only in this way that one can judge the e�ect and importance of the various terms and,
most importantly, compare with experiment. It might also be possible to determine some of the
closure parameters by comparing the results of such simulations with experimental data or
direct numerical simulations.
It was shown in both this paper and in Paper I that, in a non-uniform suspension, an

interphase slip velocity develops even in situations (e.g., uniform shear) for which no such slip
would exist in the uniform case. This result hints at the possibility that the closure relations
derived here might contain the phenomenon of shear-induced particle migration. Since we have
an explicit momentum equation for the particle phase, this e�ect would appear here not as
di�usion, but as the response of the particles to deterministic (average) forces7. A similar
conclusion has been reached by other means by Nott and Brady (1994). In order to verify this
conjecture, it will be necessary to wait until solutions of the averaged equations become
available.
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Appendix A. De®nitions

We collect here several de®nitions relating to the quantities introduced in Section 2.
The mean volumetric ¯ow rate um may be written as

um � bChuCi � bDhuDi, �A:1�
where uC, D are the velocities of the phases and the ensemble averages, indicated by angle
brackets, and are de®ned by

bC, DhuC, Di�x, t� � 1

N!

�
dCNwC�x; N�uC, D�x, t; N�P�N, t�: �A:2�

Here the notation uC; D�x, t; N � stresses the fact that the instantaneous velocities at point x
and time t are evaluated when the N particles are in the con®guration CN: It should be noted

7 One would expect that a description in terms of di�usion would be recovered by deriving an approximate re-
lation for uD from the particle momentum equation and substituting it into the particle number equation (2.2).
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that the disperse-phase average velocity huDi is di�erent from the particle average velocity w
that is de®ned by

n�x, t� Åw�x, t� � 1

N!

�
dCNP�N�

"XN
a�1

d
ÿ
xÿ ya

�
wa�N�

#

� 1

�Nÿ 1�!
�

dCNÿ1P�x, w, Nÿ 1�w1�x, w, Nÿ 1� �A:3�

in which wa is the velocity of the ath particle. The di�erence consists in the fact that huDi is the
mean velocity of all the particle material contained in the unit volume, while Åw is the mean
velocity of the particle centers of mass contained in the unit volume. The two quantities are of
course equal in a spatially uniform suspension. In general, however, they are related by

bDhuDi �
�
1� a2

10
r 2 � a4

280
r4 � � � �

�
�nv Åw� � a2

5

�
1� a2

14
r 2 � � � �

�
r � �nv ÅOOO�, �A:4�

where ÅOOO is the particle-average angular velocity. In a similar way, bD is not exactly equal to nv:

bD �
�
1� a2

10
r 2 � a4

280
r4 � � � �

�
�nv�: �A:5�

According to the results of Paper II, the mixture pressure pm is given by

pm � bChpCi �
�
1� a2

10
r 2

��
nvpe

�� 1

5
a2r �

"
n

�
jrj�a

dS� ÿ n�pC

#

� 1

14
a2rr:

"
n

�
jrj�a

�
nnÿ 1

3
I

�
pC

#
� � � � : �A:6�

Here pC is the continuous-phase pressure, hpCi is de®ned as in Eq. (A.2), the integrals are over
the surface of the particles, and the quantity pe is the average of the mean pressure over the
particle surface de®ned by

pe�x, t; N� � 1

4pa2

�
jrj�a

dSrpC�x� r, tjN�: �A:7�

The various particle averages in Eq. (A.6) are de®ned as in Eq. (A.3).
When adapted to the present case of constant hydrodynamic force, the expression given in

Eq. (5.33) of Paper II for the symmetric part of the stress S is

S � bC�hsssCi � hpCiI� �
�
1� a2

14
r 2

�
�nts� � r�nss� � rr:�nrs�, �A:8�

where ts, ss, and rs are tensors related to moments of the traction at the particle surface and
expressible in terms of averages of Lamb coe�cients as shown in Appendix B. Speci®cally, ts is
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the stresslet given by

tsij �
1

2

�
T0

ij �T0
ji

�
, �A:9�

with

T0
ji � a

�
jrj�a

dSr

�
nj�sssC � n�iÿ

1

3
dij�n � sssC � n�

�
: �A:10�

Similarly,

sskji �
1

2

�
S0

kji � S0
kij

�
ÿ 1

3
dijS0

kmm, �A:11�

rslkji �
1

2

�
R0

lkji �R0
lkij

�
ÿ 1

3
dijR0

lkmm: �A:12�

with

S0
kji �

1

2
a2

�
jrj�a

dSr

�
nknj�sssC � n�iÿ

1

5

ÿ
dij�n � sssC�k�dkj�n � sssC�i�dki�n � sssC�j

��
, �A:13�

Rlkji � 1

6
a3
�
jrj�a

dSrnlnknj�sssC � n�i, �A:14�

R0
lkji � Rlkji ÿ a2

84
dijklpqT0

pq �
a2

30
vdijklpe �A:15�

In Zhang and Prosperetti (1997) it was also shown that, for rigid particles,

bChsssCi � ÿbChpCiI� 2mCEm: �A:16�
The average total hydrodynamic force on the particles is

A �
�
jrj�a

dSsssC � n: �A:17�

The antisymmetric part of the stress is

Aji � 1

2
n
�
T0

ji ÿT0
ij

�
� @k

�
1

2
n
�
S0

kji ÿS0
kij

��
� @ l@k

�
1

2
n
�
R0

lkji ÿR0
lkij

��
, �A:18�

and the isotropic part

qm � a2

5
r�nA�� ÿ a2

14
@k@ l

ÿ
ntskl

��� 1

15
a2nr �Aÿ @k

ÿ
nsikmm

�ÿ @ l@kÿnrilkmm

�
, �A:19�
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where A�, �ts�� denote the part of A, ts arising from the viscous stresses, i.e.

A� �
�
jrj�a

dS�sssC � pCI� � n, �A:20�

T �0ji � a

�
jrj�a

dSr

�
nj
��sssC � pCI� � n�

i
ÿ1
3
dij
�
n�sssC � pCI� � n��: �A:21�

Appendix B. Explicit expressions

The relations of Appendix A are general and are valid whether or not the local particle
Reynolds number is small. If the particles are immersed in a local Stokes ¯ow, more speci®c
expressions in terms of the local microscopic ®elds near the particles can be obtained. Here we
present such explicit expressions which make it possible in practice to evaluate the averages
numerically.
If the sphere a is immersed in Stokes ¯ow, an exact solution for the ¯ow ®elds is known in

the form (Lamb, 1932; Kim and Karrila, 1991):

paC � mC

X1
ÿ1

pan, �B:1�

ua
C �

X1
ÿ1

�
1

�n� 1��2n� 3�
�
1

2
�n� 3�r2rpan ÿ npanr

�
� rfa

n � r
ÿ
rwan

��
, �B:2�

where each one of the pan, fa
n, and wan is a spherical harmonic of order n, r � xÿ ya is the

distance from the particle center and r � jrj: Here and in the following we follow the notation
of Mo and Sangani (1994) to whose paper the reader is referred for details.
With these expressions, the surface integrals appearing in the de®nition (A.6) of the mixture

pressure given in the previous section can be calculated with the results

pe � p0, �B:3�
�
jrj�a

dSnpC � vrr3pÿ2 ÿ 30

a2
vrr3f�ÿ2, �B:4�

�
jrj�a

dS

�
nnÿ 1

3
I

�
pC � a2

5
vrrr5pÿ3 ÿ 21

2
vrrr5f�ÿ3: �B:5�

Here and in the following the notation implies that all the r-dependent quantities are evaluated
at the particle center r � 0 after taking the derivatives with respect to r. Inserting these
expression into Eq. (A.6) we ®nd
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The other quantities introduced in the previous section can also be calculated explicitly. The
results are
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2

3
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ÿ
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�
, �B:7�
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where

f�ÿnÿ1 � fÿnÿ1 ÿ
a2

4n� 2
pÿnÿ1: �B:10�

The isotropic part qm is found to be

qm � 2
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The combinations arising in the antisymmetric part (A.18) are
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Upon comparing with Eq. (2.8), Aij�eijm�Rmÿemqr@qVr�, one immediately ®nds
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Finally, we give the expression of the total mean hydrodynamic force on the particles:

A�sssC � � ÿ4pamCrr3pÿ2: �B:17�
and for the total mean hydrodynamic couple:
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�
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